quinta-feira, 11 de fevereiro de 2010

Descrição dos circuitos da placa mãe





Você encontrará nas placas de CPU, circuitos chamados de “reguladores de tensão”. Esses circuitos são pequenas fontes de alimentação do tipo CC-CC (convertem tensão contínua em outra tensão contínua com valor diferente). A figura abaixo mostra um desses circuitos. São formados por um transistor chaveador , o transformador (o anel de ferrite com fios de cobre ao seu redor), capacitores eletroliticos de filtragem e o regulador de tensão (são similares aos transistores chaveadores).






O objetivo do regulador de tensão é regular as tensões necessárias ao funcionamento dos chips. Por exemplo, memórias DDR operam com 2,5 volts, mas a fonte de alimentação não gera esta tensão, então um circuito regulador na placa mãe recebe uma entrada de +5 ou +3,3 volts e a converte para 2,5 volts. Na época dos primeiros PCs, a esmagadora maioria dos chips operavam com +5 volts. Esta era portanto a única saída de alta corrente (fontes padrão AT). A saída de +12 volts naquela época operava com corrente menor que nas fontes atuais. Chegaram então os primeiros processadores a operarem com 3,3 volts, como o 486DX4 e o Pentium. As placas de CPU passaram a incluir circuitos reguladores de tensão, que geravam +3,3 volts a partir da saída de +5 volts da fonte. Novos processadores, chips e memórias passaram a operar com voltagens menores. Memó-rias SDRAM operavam com +3,3 volts, ao contrário das antigas memorais FPM e EDO, que usavam +5 volts. Chipsets, que fazem entre outras coisas, a ligação entre a memória e o processador, passaram a operar com +3,3 volts. Os slots PCI ainda usam até hoje, +5 volts, mas o slot AGP no seu lançamento operava com +3,3 volts, e depois passou a operar com +1,5 volt. Por isso uma placa de CPU moderna tem vários reguladores de tensão. Interessante é o funcionamento do regulador de tensão que alimenta o processador. Este regulador era antigamente configurado através de jumpers. Por exemplo, a maioria dos processadores K6-2 operava com 2,2 volts, e esta tensão tinha que ser configurada. A partir do Pentium II, a tensão que alimenta o núcleo do processador passou a ser automática, apesar de muitas placas continuarem oferecendo a opção de configuração manual de tensão para o núcleo do processador. Um processador moderno tem um conjunto de pinos chamados VID (Voltage Identification). São 4, 5 ou 6 pinos, dependendo do processador. Esses pinos geram uma combinação de zeros e uns que é ligada diretamente nos pinos de programação do regulador de tensão que alimenta o processador. Na maioria das placas de CPU, este circuito gera a tensão do núcleo do processador a partir da saída de +12 volts da fonte. Por isso as fontes de alimentação atuais (ATX12V, mas conhecidas vulgarmente no comércio como “fonte de Pentium 4”) tem o conector de +12 volts dedicado e de alta corrente.


O funcionamento dos diversos reguladores de tensão da placa mãe está ilustrado na figura acima. Usamos como exemplo a geração de +1,5 volts para um processador Pentium 4 a partir dos +12 volts da fonte। Os +12 volts passam pelo transistor chaveador e são transformados em +12 volts pulsantes (onda quadrada) de altra freqüência. Esta onda passa pelo transformador e é reduzida para uma tensão adequada à redução posterior (+2 volts, por exemplo). Esta tensão é retifica-da e filtrada. Finalmente passa por um regulador que “corta” o excesso de tensão, dei-xando passar exatamente a tensão exigida pelo núcleo do processador.


Depois do processador, das memórias e do chipset, o Super I/O é o próximo chip na escala de importância. Trata-se de um chip LSI, encontrado em praticamente todas as placas de CPU. Note entretanto que existem alguns chipsets nos quais a Ponte Sul já tem um Super I/O embutido.

O chip mostrado na figura 41 é um exemplo de Super I/O, produzido pela Winbond. Podemos entretanto encontrar chips Super I/O de vários outros fabricantes, como ALI, C&T, ITE, LG, SiS, SMSC e UMC.

Os chips Super I/O mais simples possuem pelo menos:

· Duas interfaces seriais

· Interface paralela

· Interface para drive de disquetes

· Interface para mouse e teclado

Diagrama em blocos do chip super I/O PC87366.

Outros modelos são bem mais sofisticados, com vários outros recursos. A figura acima mostra o diagrama de blocos do chip PC87366 (Veja datasheet no CD) fabricado pela National Semiconductor. Além das interfaces básicas, este chip tem ainda recursos para monitoração de hardware (temperaturas e voltagens), controle de Wake Up (para o computador ser ligado automaticamente de acordo com eventos externos), Watchdog (usado para detectar travamentos), controle e monitorador de velocidade dos ventiladores da placa de CPU, interface MIDI, interface para joystick e portas genéricas de uso geral. Podemos ainda encontrar modelos dotados de RTC (relógio de tempo real) e RAM de configuração (CMOS). Note pelo diagrama da figura 42 que todas as seções deste chip são interfaces independentes, conectadas a um barramento interno. Externamente, este chip é ligado ao barramento ISA ou LPC (depende do chip), diretamente na Ponte Sul.

Gerador de Clock


Nem todos os clocks são gerados diretamente por cristais. Existem chips sintetizadores de clocks, como o W210H, CY2255SC, CY2260, W48C60, W84C60, CMA8863, CMA8865, CY2273, CY2274, CY2275, CY2276, CY2277, ICS9148BF, W48S67, W48S87, entre outros. Esses chips geram o clock externo para o processador e outros clocks necessários à placa de CPU, como por exemplo o clock necessário ao barramento USB. Todos esses clocks são gerados a partir de um cristal de 14,31818 MHz, o mesmo responsável pela geração do sinal OSC. Nessas placas, se este cristal estiver danificado, não apenas o sinal OSC do barramento ISA será prejudicado – todos os demais clocks ficarão inativos, e a placa de CPU ficará completamente paralisada. Normalmente os chips sintetizadores de clocks ficam próximos ao cristal de 14,31818 MHz e dos jumpers para programação do clock ex

terno do processador.

Praticamente todos os circuitos eletrônicos utilizam um cristal de quartzo para controlar o fluxo de sinais elétricos responsáveis pelo seu funcionamento. Cada transístor é como um farol, que pode estar aberto ou fechado para a passagem de corrente elétrica. Este estado pode alterar o estado de outros transístores mais adiante, criando o caminho que o sinal de clock irá percorrer para que cada instrução seja processada. De acordo com o caminho tomado, o sinal irá terminar num local diferente, gerando um resultado diferente.

Chip CMOS

Fisicamente, o chip CMOS pode estar implementado de diversas formas, Na figura 46, vemos um exemplo de chip CMOS, com tamanho particularmente grande. Na maioria dos casos, este chip tem um tamanho bem menor. Na maioria das placas de CPU atuais, o CMOS não é na verdade um chip isolado, e sim, uma parte do SUPER I/O ou do chipset.

Os chips CMOS de placas de CPU antigas, tanto os isolados quanto os embutidos em chips Super I/O ou Ponte Sul, podem apresentar um sério problema: incompatibilidade com o ano 2000. Modelos antigos podem ser incapazes de contar datas

superiores a 31 de dezembro de 1999 (o velho bug do ano 2000). Por isso pode não valer a pena recuperar placas de CPU antigas que

sejam incompatíveis com a virada do ano 2000.

Fisicamente, o chip CMOS pode estar implementado de diversas formas, Na figura 46, vemos um exemplo de chip CMOS, com tamanho particularmente grande. Na maioria dos casos, este chip tem um tamanho bem menor. Na maioria das placas de CPU atuais, o CMOS não é na verdade um chip isolado, e sim, uma parte do SUPER I/O ou do chipset.

A Figura acima mostra o diagrama de blocos de um chip CMOS. O bloco principal deste chip tem 128 bytes de RAM, mantidas pela bateria. Desses bytes, 14 são usados para armazenar as informações de tempo (clock registers) e controle, e os demais 114 são para uso geral. Nessas posições são armazenadas as opções de configuração do CMOS Setup. Note que os bytes usados para contagem de tempo são também ligados a um oscilador. A base de tempo deste oscilador é gerada a partir de um cristal de 32,768 kHz. Note ainda que o chip tem um módulo de alimentação, ligado à bateria, e sinais para a comunicação com o barramento no qual o chip está ligado (em geral o barramento ISA). São sinais de dados, en

dereços e controle, com os quais o processador pode ler e alterar as informações do chip.

Controlador de memória cache ( ponte norte)

A memória cache consiste numa pequena quantidade de memória SRAM, incluída no chip do processador. Qu

ando este precisa ler dados na memória RAM, um circuito especial, chamado de controlador de Cache, tra

nsfere os dados mais requisitados da RAM para a memória cache. Assim, no próximo acesso do processador, este consultará a memória cache, que é bem mais rápida, permitindo o processamento de dados de maneira mais eficiente. Enquanto o processador lê os dados na cache, o controlador acessa mais informações na RAM, transferindo-as para a memória cache. De grosso modo, pode-se dizer que a cache fica entre o pro

cessador e a memória RAM. Veja a ilustração abaixo que ilustra est

a definição.



Ponte Norte e Ponte Sul

Cada chipset é formado por dois chips, um MCH (Memory Controller Hub = Ponte norte), e um ICH (I/O Controller Hub = ponte sul). O chip de controle da ponte norte tem como atribuição trabalhar com processador, memórias e AGP, enquanto que a ponte sul gerencia interface IDE, portas USB, dispositivos de entrada e saída e ainda com o BIOS. As características de um chipset são conseqüênci

as das características dos dois chips que o formam.

A figura ao lado mostra o diagrama de uma placa de CPU antiga. Note que a ligação entre a ponte norte e a ponte sul era feita pelo barramento PCI. Esta ligação ficou congestionada com a chegada dos discos IDE de alta velocidade (ATA-100 e ATA-133). As interfaces USB 2.0, com sua taxa máxima teórica de 60 MB/s, bem como as interfaces de rede, com cerca de 12 MB/s, acabavam contribuindo para que este link ficasse cada vez mais congestionado.
Já em 1999 surgiram chipsets com uma estrutura diferente. A ligação entre a ponte norte e a ponte sul passou a
ser feita, não mais pelo barramento PCI, e sim por um link de alta velocidade. A estrutura utilizada atualmente é a mostrada na figura abaixo. É empregada em todos os chipsets 865 e 875, bem como em outros modelos mais antigos da Intel e de outros fabricantes, a partir do


ano 2000.

A estrutura usada nos chipsets modernos é a indicada na figura acima. Note a conexão entre a ponte norte e a ponte sul, que é exclusiva. O barramento PCI é independente desta conexão, fica ligado diretamente na ponte sul. Equanto na configuração tradicional é usado o barramento PCI, compartilhado com outros dispositivos e placas e a 133 MB/s, nos novos chipsets Intel esta conexão é dedicada (não compartilhada com outros componentes) e opera com 266 MB/s.

Para saber os principais recursos existentes em uma placa, basta conhecer as características do chipset. Outros recursos são conseqüência de chips adicionais utilizados pelo fabricante no projeto da placa mãe. Para facilitar a escolha de uma boa placa de CPU, apresentamos a tabela abaixo que mostra as pequenas diferenças entre os diversos chipsets.

Recurso

Explicação

800/533/400 MHz System Bus

O FSB de 800 MHz é indicado para os processadores Pentium 4 mais novos. Todos os chipsets deste artigo suportem FSB de 800, 533 e 400 MHz, exceto o 865P, que suporta 533 e 400 MHz.

533/400 MHz System Bus

Todos os chipsets deste artigo suportem FSB de 800, 533 e 400 MHz, exceto o 865P, que suporta 533 e 400 MHz.

Intel® Hyper-Threading Technology Support

Aumenta o desempenho do processador sem provocar aumento no seu custo. O sistema "enxerga" um processador com Hyper-Threading como se fossem dois processadores.

478-pin Processor Package Compatibility

Dá suporte e utiliza o tradicional soquete de 478 pinos, já utilizado nos demais processadores Pentium 4.

Intel® Extreme Graphics 2 Technology

Vídeo gráfico onboard 2D/3D de alta perforformance, comparável ao de um chip GeForce2 médio. Suficiente para executar os programas 3D modernos sem a necessidade de uma placa 3D.

Intel® Hub Architecture

Conexão direta e exclusiva entre a ponte norte e a ponte sul, de 266 MB/s, evita quedas de desempenho que ocorria nos chipsets mais antigos, devido ao congestionamento do barramento PCI.

Dual-Channel DDR 400/333/266 SDRAM

Dois módulos de memória DDR iguais oferecem desempenho duas vezes maior que o de um módulo só, como ocore nas placas equipadas com chipsets mais antigos. Podem ser usadas memórias DDR400, DDR333 ou DDR 266.

Dual-Channel DDR
333/266 SDRAM

Memória DDR em duplo canal, porém com velocidade máxima de 533 MHz. O chipset 865P é o único deste grupo que não opera com DDR400, suportando apenas DDR266 e DDR333.

ECC memory

Permite operar com memórias DDR de 72 bits, com checagem e correção de erros (ECC), indicado para aplicações que exigem confiabilidade extrema. Disponível apenas no chipset 875P.

PAT - Performance Acceleration Technology

Disponível apenas no chipset 875P, resulta em menor latência nos acessos à memória, resultando em aumento de desempenho.

Intel® Dynamic Video Output Interface

Saída para monitor ou TV digital.

AGP8X Interface

Highest bandwidth graphics interface enables upgradeability to latest graphics cards.

Integrated Hi-Speed USB 2.0

Quatro portas USB 2.0, cada uma com velocidade de 480 Mbits/s.

Dual Independent Serial ATA Controllers

Interfaces IDE primária e secundária de 100 MB/s e duas interfaces Sserial ATA de 150 MB/s.

Intel® RAID Technology

As interfaces Serial ATA podem operar em modo RAID, o que aumenta a confiabilidade e o desempenho.

Ultra ATA/100

As interfaces IDE operam no modo ATA-100.

AC '97 Controller Supports

Áudio de alta qualidade padrão 5.1.

Integrated LAN controller

Interface de rede de 10/100 Mbits/s (Ethernet).

Intel® Communication Streaming Architecture

Conexão de alta velocidade para chip de rede de 1000 Mbits/s. O chip é opcional, e não faz parte do chipset. Caso seja desejado o seu uso, podemos escolher uma placa que possua este recurso.

Low-Power Sleep Mode

Economia de energia